Molecular determinants of subtype-selective efficacies of cytisine and the novel compound NS3861 at heteromeric nicotinic acetylcholine receptors.

نویسندگان

  • Kasper Harpsøe
  • Helle Hald
  • Daniel B Timmermann
  • Marianne L Jensen
  • Tino Dyhring
  • Elsebet Ø Nielsen
  • Dan Peters
  • Thomas Balle
  • Michael Gajhede
  • Jette S Kastrup
  • Philip K Ahring
چکیده

Deciphering which specific agonist-receptor interactions affect efficacy levels is of high importance, because this will ultimately aid in designing selective drugs. The novel compound NS3861 and cytisine are agonists of nicotinic acetylcholine receptors (nAChRs) and both bind with high affinity to heteromeric α3β4 and α4β2 nAChRs. However, initial data revealed that the activation patterns of the two compounds show very distinct maximal efficacy readouts at various heteromeric nAChRs. To investigate the molecular determinants behind these observations, we performed in-depth patch clamp electrophysiological measurements of efficacy levels at heteromeric combinations of α3- and α4-, with β2- and β4-subunits, and various chimeric constructs thereof. Compared with cytisine, which selectively activates receptors containing β4- but not β2-subunits, NS3861 displays the opposite β-subunit preference and a complete lack of activation at α4-containing receptors. The maximal efficacy of NS3861 appeared solely dependent on the nature of the ligand-binding domain, whereas efficacy of cytisine was additionally affected by the nature of the β-subunit transmembrane domain. Molecular docking to nAChR subtype homology models suggests agonist specific interactions to two different residues on the complementary subunits as responsible for the β-subunit preference of both compounds. Furthermore, a principal subunit serine to threonine substitution may explain the lack of NS3861 activation at α4-containing receptors. In conclusion, our results are consistent with a hypothesis where agonist interactions with the principal subunit (α) primarily determine binding affinity, whereas interactions with key amino acids at the complementary subunit (β) affect agonist efficacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes.

Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relati...

متن کامل

Characterization of nicotinic acetylcholine receptors that modulate nicotine-evoked [3H]norepinephrine release from mouse hippocampal synaptosomes.

Nicotine's modulation of hippocampal noradrenergic neurotransmission may contribute to its mnemonic properties, but the nicotinic acetylcholine receptor (nAChR) subtypes that modulate terminal release of norepinephrine are unknown. In the present study, we used a number of subtype-selective alpha-conotoxins in combination with nicotinic receptor subunit-deficient mice to characterize nAChRs tha...

متن کامل

The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study.

Zebrafish (Danio rerio) have been used to study multiple effects of nicotine, for example on cognition, locomotion, and stress responses, relying on the assumption that pharmacological tools will operate similarly upon molecular substrates in the fish and mammalian systems. We have cloned the zebrafish nicotinic acetylcholine receptor (nAChR) subunits and expressed key nAChR subtypes in Xenopus...

متن کامل

Nicotinic cholinergic receptors in the rat retina: simple and mixed heteromeric subtypes.

Neuronal nicotinic acetylcholine receptors (nAChRs) were measured in the rat retina to determine the heteromeric subtypes. We detected seven nicotinic receptor subunit mRNA transcripts, alpha2-alpha4, alpha6, and beta2-beta4, with RNase protection assays. The density of heteromeric nAChR binding sites is approximately 3 times higher in the retina than in the cerebral cortex. Moreover, the densi...

متن کامل

Cytisine-based nicotinic partial agonists as novel antidepressant compounds.

Nicotine and other nicotinic agents are thought to regulate mood in human subjects and have antidepressant-like properties in animal models. Recent studies have demonstrated that blockade of nicotinic acetylcholine receptors (nAChRs) including those containing the beta2 subunit (beta2(*)), results in antidepressant-like effects. Previous studies have shown that cytisine, a partial agonist at al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 4  شماره 

صفحات  -

تاریخ انتشار 2013